« 春のハーフ、気持ちいい♪&17年4月の全走行距離 | トップページ | リカちゃん50周年♪&連休直前に1km5分ハーフ、ヘロヘロ・・ »

物体の衝突、運動量保存法則、はねかえり係数~物理の問題と解き方6

問題文を書き写すのが面倒で、なかなか進まない『物理重要問題

集』シリーズ、第6弾。約半年ぶりになってしまったが、今回も数研

出版が集めた受験問題を解説してみよう。

    

これまでの5本は次の通り。他にも物理カテゴリーの記事は色々あ

るし、数学カテゴリーには多数の記事がある。アクセスは地味に続

いてるので、それなりの需要はあるようだ。

    

 等加速度直線運動、放物線、モンキー・ハンティング~物理1

 運動の法則、浮力、物体の連結と分離~物理2

 動滑車、摩擦力(静止・動)、バネの弾性力~物理3

 等速円運動、円すい振り子、万有引力と人工衛星~物理4

 単振動、ばね振り子、水平ばね2本~物理5

     

今回は第6章、運動量の保存(p.36~)のA問題から3問。

いつものように、式や説明などはすべて私が書いたもの。

読みやすさと入力環境のため、小文字を大文字に変えた

り、添え字を小文字に変えたりしてるが、言葉遣いは元の

ままだ。

  

   

     ☆        ☆        ☆

 54 (一直線上の衝突) 関西学院大

  

 なめらかな水平面上をx方向に運動する2つの球A、Bが

 向心衝突した。A、Bそれぞれの衝突前の速度をVa、

 Vb、衝突後の速度をUa、Ub、質量をMa、Mbとする。

    

 (1) 反発係数(はねかえりの係数)eを上の記号を

    用いて表せ。

 (2) Va=26m/s、Vb=8m/s、Ma=0.4kg、

    Mb=1.8kg、e=0.8としてUa、Ubを求めよ。

 (3) この衝突によって失われた力学的エネルギー

    ΔEを計算せよ。

 (4) 失われた力学的エネルギーは何に変わったか。

   

   

      ☆        ☆        ☆

 解答

 (1) 定義式より、 

   e = -(Ua-Ub)/(Va-Vb) ・・・答

    

 (2) 反発係数の定義式より、

    0.8=-(Ua-Ub)/(26-8)

    ∴ -Ua+Ub = 14.4 ・・・①

    また、運動量保存則より、

    0.4×26+1.8×8=0.4Ua+1.8Ub

    ∴ 2Ua+9Ub=124 ・・・②

    ①②の連立方程式を解いて、

     Ua=-0.5 m/s,

     Ub=13.9 m/s ・・・答

    

 (3) ΔE={(1/2)×0.4×26²+(1/2)×1.8×8²}

  -{(1/2)×0.4×(-0.5)²+(1/2)×1.8×13.9²}

       =18.9 (J) ・・・答

    

 (4) 熱エネルギー、音のエネルギー、

    球の変形のエネルギー ・・・答

  

   

 (解説・感想)

  全くの基本問題で、小数や分数の計算ミスに注意すれば

  よい。数値がキレイに出ないし、有効数字も不明だが、

  (2)の問題文から、小数第1位までと考えておいた。2ケ

  タで答えても、ほとんど減点はないはず。

  

    

      ☆        ☆        ☆

 55 (走る台車からの打ち上げ) 上智大

   

 水平面上に固定されたなめらかなレール上を、質量

 500g(弾丸を含む)の台車が2.0m/sの速さで

 走っている。時刻t=0に、この台車から100gの

 弾丸を、水平面上の観測者から見て、鉛直方向から

 30度後方に向けて12m/sの速さで打ち上げた。

 弾丸が上昇して再びレール上に落下した瞬間の台車

 と弾丸との距離はいくらか。ただし、重力の加速度

 9.80m/s²、√3=1.73とする。

   

   

     ☆        ☆        ☆

 解答

170502a_va_vix

    

 発射後の台車の速さを x m/sとする。

 水平方向の運動量保存則より、右向きを正として、

  0.5×2.0=0.4x+0.1×(-12×sin30°)

 ∴ 1=0.4xー0.6   ∴ x=4 

   

 また、弾丸の鉛直方向の初速は、

 12×cos30°=6√3=10.38

   

 鉛直方向・上向きを正とし、時刻t(>0)における

 位置が0とおいて、

 10.38t-(1/2)×9.8×t²=0

 ∴ 10.38=4.9t   ∴ t=2.12

   

 これが弾丸落下時の時刻だから、求める距離は、

 (台車の右向き移動距離)+(弾丸の左向き移動距離)

 =4×2.12+(12×sin30°)×2.12

 =10×2.12

 =21.2 (m) ・・・答

  

    

 (解説・感想)

 水平面上から台車の上の面までの高さが書いてないから、

 ゼロと解釈。問題文が3ケタの数字になってるから、tは

 4ケタで計算する方がいいかも知れないが、おそらく問題

 作成者でさえ3ケタで計算してるはず♪

 弾丸の打ち上げ角度を、水平方向に対して30度だと誤解

 しないように。。

   

    

     ☆        ☆        ☆

 56 (床との衝突 東京水産大

   

 高さ10mの所から、ボールを静かにはなして床に落とし

 たら、衝突してはね上がり、6.4m(最高点)までもどった。

 このあと再び床に落ちてはね上がることをくり返した。重力

 加速度を9.8m/s²とする。

    

 (1) はねかえりの係数を求めよ。

 (2) 手をはなしてから、床ではね返り、6.4mの最高点

    に達するまでにかかる時間を求めよ。

 (3) 2回目に床に衝突する直前の速度と直後の速度を

    求めよ。

 (4) 何回かくり返しているうちに、最高点はしだいに低く

    なるが、最高点が3.0mに達しないのは何回目の

    衝突のあとか。

   

   

     ☆        ☆        ☆

 解答

 (1) 衝突直前の下向きの速度を x m/sとすると、

     速度、加速度、距離の関係式より

     x²-0²=2×9.8×10

     ∴ x=14

     衝突直後の上向きの速度を y m/sとすると、

     0²-y²=2×(-9.8)×6.4

    ∴ y=11.2

    よって、 速度ゼロのまま動かない地面に関して、

    (はねかえりの係数)

      =-(11.2-0)/(-14-0)

      =0.8 ・・・答

    

 (2) (落ちる時間)+(上がる時間)

    =14/9.8+11.2/9.8

    =2.6 (s) ・・・答

    

 (3) 下向きを正とすると、

    (2回目の衝突直前の速度)

    =(1回目の衝突直後の速度の符号を逆にしたもの)

    =-11.2 (m/s) ・・・答

   (2回目の衝突直後の速度)

    =-(衝突直前の速度)×(はねかえり係数)

    =-11.2×0.8

    =-9.0 (m/s) ・・・答 

   

 (4) 上向きを正として、

    (3回目の衝突直後の速度)

    =(2回目の衝突直後の速度)×(はねかえり係数)

    =9.0×0.8

    =7.2 (m/s)

    最高点の高さをhとすると、

    0²-7.2²=2×(-9.8)h

    ∴ h=51.84/19.6 < 3 (m)

    よって、3回目の衝突のあと。 ・・・答

   

    

 (解説・感想)

 鉛直方向のはね返りの問題では、速度計算する時の符号の

 プラス・マイナスに注意する必要がある。

   

 2回目以降の衝突の計算では、はねかえり係数の定義式を

 使うのは省略した。もし時間があれば、真面目に定義に従う

 ところだが、多くの受験生は省略すると思う。

    

 (4)の問題文は、おそらく「はじめて3.0mに達しない

 のは・・・」という意味だろうと解釈した。文字通りに読むと、

 答は、「n回目の衝突(n≧3)」とかだろう♪

    

    

やはり、物理の記事は入力が大変だなと思いつつ、それでは

今日は この辺で。。☆彡

    

                    (計 2650字)

|

« 春のハーフ、気持ちいい♪&17年4月の全走行距離 | トップページ | リカちゃん50周年♪&連休直前に1km5分ハーフ、ヘロヘロ・・ »

数学」カテゴリの記事

物理」カテゴリの記事

コメント

コメントを書く



(ウェブ上には掲載しません)




« 春のハーフ、気持ちいい♪&17年4月の全走行距離 | トップページ | リカちゃん50周年♪&連休直前に1km5分ハーフ、ヘロヘロ・・ »