« 『リッチマン、プアウーマン』最終回、軽~い感想♪ | トップページ | 書き過ぎだから、今夜はつぶやき記事で調整♪ »

数学甲子園2012、予選問題&3日ぶりのラン、まだ暑い・・

(☆15年9月19日の追記: 関連する最新記事をアップ。

       数学甲子園2015、全20問の問題、解き方、感想 )

 

 

            ☆          ☆          ☆

RUN 16km,1時間17分32秒,平均心拍149

 

ここ1週間ほど、頭の中が数学モードになっちゃってるね (^^ゞ キッカケは

たまたま知ったサッカー場の広告の面白話だけど、その記事の続編みた

いなものをすぐに準備。記事としてアップしようと思ってたら、超難問「ABC

予想」が証明されたかも・・というニュースが飛び込んで来た。

 

早速あわてて、そちらを勉強♪ ちょっと分かった気になれたから、そちら

を先に記事にしようと思ったら、数学甲子園2012の予選問題が今日(9月

19日)、公開されてたから、つい釣られてしまったのだ。何のこっちゃ!

 

時間と字数制限と、記事の需要を考えて、今日はこの予選問題について少

しだけ書いとこう。私が一番気になるのは、公式HPの告知にも問題にも、

各予選会場の名前が入ってないこと。ひょっとして全国共通の問題を使って

るのかね? それはヤバイでしょ。

 

札幌は8月18日、名古屋は8月26日。秒単位でデジタル情報が個人的

にやり取りされる時代に、8日間もの時間差があるんじゃ、名古屋は満点

だらけで差がつかなくても不思議じゃない。当然、別々の問題を使うか、

逆に予選の日程を同じ日時に揃えるか、すべきだと思うけどね。。

 

 

           ☆          ☆          ☆

一方、問題内容は、元々公開されてたサンプル問題と似たような基本~

標準レベルだけど、少し難しくしてるような気もする。と言っても、20問で

60分なら、数学大好き少年&少女にとってはかなり楽勝のはず。勝敗

の分かれ目は、最後の20番じゃないかな。たまたま、今話題の「ABC予

想」と同じく整数問題で、素数や素因数分解が重要な役割を果たす。

 

まずはその「問題20」を引用させて頂こう。他の問題を軽くこなせば、残

り時間5~6分はあるはずだ。

 

   nを正の整数とし、次のような分数を考えます。

   n/1, (n+1)/2 ,(n+2)/3, (n+3)/4, (n+4)/5,・・・・

   上の分数のうち、整数になるものの個数がちょうど3個であるような

   nはどのような数か答えなさい。

 

問いが「求めなさい」の形になってないから、おそらく多数存在して、ちょっ

と変わった特徴を持ってる数なんだろうな、という事はすぐ想像できるだろ

う。一般的な常套手段としては、まずn=1,2,3辺りで試しに分数を作っ

て調べる所だと思う。すると、話に馴染むことは出来るけど、整数になる分

数の個数が3個にならないし、解答のカギも見つからない。

 

 

          ☆          ☆          ☆

そこで方針を変更。真面目に数式を立てて、理論的考察を開始する所だ。

分数を、{ n+(m-1)}/m (mも正の整数)と表し、その値を k とすると、

 

     { n+(m-1)}/m = k

   ∴ n+(m-1) = mk

   ∴ n-1 = m(k-1) ・・・・・・ ①

 

この式をみたすような正の整数の組(m,k)が、ちょうど3個存在するよう

なnを求めればよい。①式は、0以上の整数 n-1 を、mとk-1の掛け算

の形に分解しているから、mはn-1の正の約数。

 

よって、n-1の正の約数ちょうど3個存在すればいい。例えば、n=5

の場合、n-1=4で、正の約数は1,2,4の3個。つまり、

   n-1=1×4, 2×2, 4×1

 

この式を①と見比べれば、

  (m,k)=(1,5),(2,3),(4,2) 

で、ちょうど3組となる。

 

 

           ☆          ☆          ☆  

さて、ある整数に対して、正の約数の個数を求めるのは、よくある標準問題

だ。0に対しては、正の整数すべてが約数だから無限個になるし、1に対し

ては1のみだから、1個。そして、2以上の整数に対しては、元の数を素因

数分解すればいい。

 

たとえば、12の正の約数の個数なら、12 = 2² × 3¹ と素因数分解すれ

ば、右辺の右肩の数を用いて、

     (正の約数の個数)=(+1)×(+1)=6個

 

というのも、正の約数は(2のx乗)×(3のy乗)の形であって、xは0、1、2

の3通り(=2+1通り)、yは0、1の2通り(=1+1通り)だからだ。正の

約数は、(2+1)×(1+1)通り出来ることになる。具体的に並べるなら、

1、2、3、4、6、12。確かに6個だ。。     

 

 

          ☆          ☆          ☆

話を本題に戻すと、正の約数がちょうど3個になるのは、0や1では直ちに

ダメと分かるから、元の数の素因数分解が (素数)² の形になってる時だ

けとなる。これなら正の約数の個数は+1=3個だ。

 

例えば4(=2²) は前に挙げた例(n=5)だし、9(=3²) は正の約数が1、

3、9の3個。したがって、n-1=(素数)²。つまり、n=(素数)²+1。これ

となる。 

 

答だけ出せばいい問題とはいえ、n、m、k、3つの整数が頭の中でモヤモ

ヤして焦った参加者が多かっただろう。大学入試の記述問題にも使えそう

な、手頃でいい問題だと思う。ちなみに正解は発表されてないので、もし間

違ってたら悪しからず。。(笑)

 

 

 

cf. 数学甲子園2012・サンプル問題の解き方&リハビリジョグ2

   数学甲子園2013予選のポイント、問題15の解説&解答

   四角形の外接円の半径の求め方~数学甲子園2014予選問題13解説

 

 

          ☆          ☆          ☆

あぁ、意外に手間ヒマかかったから、後はランニングについて、ちょっとだ

け。ブログとか数学にハマり出すと、どうしても走る時間が無くなるし、気分

的にもパソコンやノートにずっと向かいたくなってしまう。まあでも、雨で2日

間休んじゃった後だから、グッと我慢して公園へ。昼間は涼しかったのに、

夜は相変わらずの熱帯夜で、気温26度もあった。湿度90%以上。

 

このコンディションだと、5分も走らない内に「蒸し暑いなぁ・・」と思い始め

て、後は心拍計のタイムを見ながらガマン大会。本当は1km5分ペース

で18km走りたかったけど、あまりに不快だから、16kmパパッと走って

終わりにした。距離を減らすのは珍しいけど、正解だったと思う。体質的に

日本の蒸し暑い夏は無理があるのだ。先天的な素質、DNAの問題だ♪

 

心拍はそれほど上がらなかったけど、呼吸は最初からハーハーだし、汗

もダラダラ。9月後半の夜遅くなのに。。それでも頑張って、トータルでは

1km4分51秒。4日前の16kmより、8秒速いペース♪ と言っても、ま

だまだ論外のペースだわな。前途多難。。

 

明日がまた厳しい残暑って話だけど、軽いジョギングくらい、やっとこう。

では、今夜はこの辺で。。☆彡

 

 

 往路(2.45km)   12分51秒     129  

  1周(2.14km)   10分48秒     142   

  2周           10分12秒     151           

  3周           10分11秒     154      

  4周           10分06秒     157

  5周           10分15秒     159

  6周(0.4km)     1分56秒     157          

 復路           11分13秒     157   

計 16km 1時間17分32秒 心拍平均149 最大168(ゴール前)

 

                                 (計 2751文字)

| |

« 『リッチマン、プアウーマン』最終回、軽~い感想♪ | トップページ | 書き過ぎだから、今夜はつぶやき記事で調整♪ »

ランニング」カテゴリの記事

数学」カテゴリの記事

コメント

n=(素数)²+1。完璧です、流石ですね。
今年は午後からの参加でしたので準々決勝、準決勝の問題は見られませんでした。決勝の創作問題は6チーム全て拝見しました。
この6高校チームの順位が数検HPに速報として載っています。
・大会の順位:1,2,3,4,5,6
・私の採点  :1,3,2,5,6,4 
 でした。第4位の高校の順位の評価があいませんでした!!!

投稿: gauss | 2012年9月21日 (金) 12時50分

> gauss さん
    
こんばんは。あっ、合ってましたか♪
どうも、どうも。
   
ちょっと変わった問題だから、とんでもない
ミスをしてるんじゃないかと、心配でした(笑)。
いまだに、理数系の記事で完全な間違いを指摘された
ことはないから、何とかこの調子をキープしたいと思ってます。
    
今年もちゃんと参加してる所が素晴らしい☆
僕もテレビなら見るんだけど♪
評価があいませんでしたと言いつつ、よく似てますね。
ベストはやはり、新参エリート校の海陽ですか。
知らなかったんで、すぐ調べて、前のサンプル問題記事に
追記したんですよ。ウチの実家から考えると、雲の上の世界。。
    
本戦の内容を詳しく知りたいのに、
公式HPの報告が僅かなのが残念です。
僕がスタッフなら、写真入りの1万字程度の報告は
すぐアップするのに。
野球の甲子園の大量報道を考えると、参加者たちが
ちょっと気の毒なほど。
   
ま、そうは言っても、すごく恵まれた時代ですけどね。
ではまた。。

投稿: テンメイ | 2012年9月23日 (日) 01時14分

コメントを書く



(ウェブ上には掲載しません)


コメントは記事投稿者が公開するまで表示されません。



« 『リッチマン、プアウーマン』最終回、軽~い感想♪ | トップページ | 書き過ぎだから、今夜はつぶやき記事で調整♪ »