「大学入学共通テスト」試行調査(プレテスト)、数学ⅡB・第3問(数列、薬を飲む量と時間間隔)の解説
「大学入学共通テスト」第1回試行調査(プレテスト)については、
の記事を書いてみよう。
問題・解答その他、情報はすべて大学入試センターHPで公開
されてる。以下で扱う第3問は一応、選択問題だが、実際はほぼ
全員が選択。
要するに、これだけ統計とかビッグデータの重要性が強調される
時代になっても、相変わらず大部分の高校生は正規分布などの
統計を避けるわけだ。高校教育のあり方や授業の進め方、大学
入試問題の傾向が問われるべきかも知れない。
☆ ☆ ☆
この問題には数値記入があるが、文章の記述は入ってない。ただ、
内容的にも難易度的にも良問だと思う。少し難しめといった感じで、
誘導も適切。あえて注文を付けるなら、薬の名前のDという文字は
紛らわしいだけだろう。無い方が親切だ。
正答率は、簡単な前半は高いが、難しくなる後半は低い。選択肢
が一部に付いてることなどを考慮すると、後半は実質的に正答者
ゼロに近いが、数ⅠAほど極端な不出来にはなってない。
日常的な実用性もある問題で、要するに、薬を毎回飲むのは面倒
だが、まとめ飲みは効率が悪い、ということ。ただし、2回まとめて
飲むくらいなら大丈夫なように、安全性も配慮して作られてるのだ。
もちろん、まとめ飲みはしないのが原則なので、念のため。間が
空き過ぎると、途中で薬の効果が不足することになるし、まとめて
飲んだ直後には副作用が強まってしまうから。
☆ ☆ ☆
(1) a(1)、つまり1回目の服用直後の血中濃度はP。すなわち、5。
a(1)=5 ・・・アの答
薬の濃度が1/2になる12時間ごとに、濃度が5増えるのだから、
a(n+1) = (1/2)a(n)+5 ・・・イ、ウ、エ
公式より、各項から引くと等比数列になるような定数は、
d=(漸化式の定数項)/〔1-{a(n)の係数}〕
=5/(1-1/2)
=10 ・・・オ、カ
a(n)-10=(1/2){a(n)-10}
よって{a(n)-10}は公比1/2の等比数列。 ・・・キ、ク
階差数列をとるなら、
a(n+2)-a(n+1)=(1/2){a(n+1)-a(n)}
∴ (公比)=1/2 ・・・ケ、コ
考え方1の方を使うと、
a(n)-10=(1/2)(n-1乗){a(1)-10}
=(1/2)(n-1乗)(-5)
∴ a(n)=10-5(1/2)(n-1乗)
・・・サ、シ、ス、セ、ソ
(2)
(1)で求めた一般項a(n)の式より、a(n)の値は常に10未満。
つまり、常にL=40を下回る。
よって、0番と1番は誤りで、2番は正しい。
また、2回目の服用直前、濃度が最も下がってる時でさえ、
a(2)-5=(10-5×1/2)-5=2.5
よって、常に濃度はM=2を上回るので、
3番は正しくて、4番と5番は誤り。
したがって答は、2番と3番。 ・・・タ
(3)
(1)と同様に考えると、24時間ごとに濃度が1/4になるから、
b(n+1)=(1/4)b(n)+5
∴ b(n)-20/3=(1/4){b(n)-20/3}
∴ b(n)=(1/4)(n-1乗){b(1)-20/3}+20/3
=20/3-5/3(1/4)(n-1乗)
∴ b(n+1)-P=5/3-5/3(1/4)(n乗)
一方、a(2n+1)-5=5-5(1/2)(2n乗)
=5-5(1/4)(n乗)
∴ {b(n+1)-P}/{a(2n+1)-P}
=1/3 ・・・チ、ツ
(4)
24時間ごとにk錠飲む場合の、n回目の服用直後の濃度を
c(n)とすると、(1)(3)と同様に考えて、
c(n+1)=(1/4)c(n)+5k
∴ c(n)=
(1/4)(n-1乗)(-5k/3)+20k/3
∴ (24n時間経過後の服用直前の濃度)
=(n+1回目の服用直前の濃度)
=c(n+1)-5k
=5k/3-5k/3(1/4)(n乗)
(3)より、これは12時間ごとに1錠飲む場合の(k/3)倍。
これが1倍になる時、 k=3 ・・・テ
この時、
(n回目の服用直後の濃度)
=c(n)
=20-5(1/4)(n-1乗)
これは常に20未満なので、L=40を超えることはない。
したがって、正しいのは3番。 ・・・ト
☆ ☆ ☆
2回分のまとめ飲みをする場合は、「ある意味」、3倍の量が必要
になるというのは面白い結果だ。
ちなみに私は、基本的に2回以上のまとめ飲みはしない。飲み
忘れた時はそのままにするか、次回に1.5回分くらい飲む。
効き目が強い場合は、少し時間を空けて、1回分+0.5回分に
分けて飲むとか。もちろん、お勧めはしないので念のため。
最後のテとトは、真面目に計算しなくても、直前の(3)から想像が
つく。元の量のままだと3分の1の濃度になってしまうから、3倍飲む
ということだし、その程度で許容範囲を超えるとは常識的に思えない。
もっと言うなら、(3)とも無関係に、単なる勘でも正答できるだろう。
それはそれで、高い評価に値する能力だと思う。
では、今日のところはこの辺で。。☆彡
(計 2108字)
| 固定リンク | 0
「数学」カテゴリの記事
- Python(パイソン)入門4~ランダムなサイコロの目の予想、数値データのリストの処理(ChatGPT4oも使用)(2024.09.20)
- パズル「絵むすび」31、解き方とコツ、考え方(難易度4、ニコリ作、朝日新聞be、2024年9月14日)(2024.09.15)
- 四角形や丸の「真ん中」に正三角形を配置するデザイン(YouTubeほか)、長さ、重心、三角形分割錯視を考慮した視覚調整(2024.09.08)
- パズル「推理」、小学生向け8、カンタンな解き方、表の書き方(難易度3、ニコリ作、朝日be、24年8月31日)(2024.09.01)
- パズル「ナンスケ」解き方13、2024年7月13日の問題は間違い「ではありませんでした」(難易度4、ニコリ作、朝日新聞be)(2024.07.13)
「教育」カテゴリの記事
- インドの摩訶不思議な「ヴェーダ数学」、100に近い2つの数の掛け算のやり方、明星学園の中学入試問題(算数)と一般的証明(2024.07.06)
- Mrs. GREEN APPLE の曲『コロンブス』のMV炎上、探検家の歴史的評価の変化と、山川出版社の現在の高校教科書『世界史探究』(2024.06.15)
- 2進法の計算、直接的な減法(引き算)と、コンピューター内部で「2の補数」を用いる減算 ~ 高校『情報Ⅰ』(2024.06.04)
- ChatGPT-4oが音声と画像認識を利用して家庭教師、三角関数(三角比)のsinを英語で教えるビデオ動画の解読(2024.05.18)
- 朝ドラ『虎に翼』で受験、昭和初期(戦前)の国家・高等試験問題とAIの解答〜司法科・選択科目「論理学」、繋辞(コプラ)の意義(2024.05.11)
コメント